بررسی فعالیت‌های گاما دوک عضلانی و 
(Rat) در دم موش

*عفت برقی (Ph.D.)

چکیده

سایه‌های و هدف: دک عضلانی مسئول کنترل فعالیت‌های عضلات استکلی در هنگام استرخات و در سیکل حرکت می‌باشد و از آن به عنوان یک عامل برای حرکات ارادی باید شده است. کار این ریسروکتینفیک کاملاً به فعالیت فیبرهای گاما است. در این مطالعه بررسی می‌شود که تاثیر فعالیت la و آوران های گروه II در دوک عضلانی می‌شود.

همچنین در دو فیبر آلفا و گاما مکانیسم‌های نزدیکی و جویدن دارد که در تنظیم کار عضالتان مخلوط مهم می‌باشد. هدف از انجام این کار تحقیقی مطالعه دقیق تر فعالیت در پاسخ‌های گاما یا در دو فیبر عضلاتی متغیر نخاع و همچنین بررسی فعالیت α-γ که بر روی این ناحیه مطالعه تحقیقات شده است، زیرا درک دقیق تر جایگزینی فیبرهای عضلاتی در فیبرهای عضلاتی موجب افزایش نخاع، ایجاد راه رسیدن به فعالیت یک بدن به علت عوامل متابولیکی باشد. هدف از انجام این تحقیقات حرکات ارادی و

می‌باشد.

مواد و روش ها: در این مطالعه از پاتژه سر موش نر عامل Sprague-Dawely و محلول داروی پیشین Urethane (30g/100ml) 170mg/100g وزن بدن با تزریق داخل پرونتو استفاده گردید. برای بررسی فعالیت la لامپتکومی در ناحیه کمی - خاجی و جراحی در ناحیه اول پوست ناحیه در صورت میگفت.

نتایج: فعالیت la موجب تحکیم مکانیکی گوش خارجی، سبب فعالیت la حلقه‌های گاما در پیک و یا دو سیگنات نخاع به طور لامپتکومی شد. به طوری که افت آمپانیس دوبالانز در la آوران های گروه II دوک عضلاتی Caudal به دنبال افزایش فعالیت یک با یک از یک به گاما. بود. از طرفی la همگونی و فعالیت پیشی در مقایسه با فیبرهای آوران های گروه II بروی فعالیت la موجب افزایش نخاع هم نمای نشان دادند. در حالی که فعالیت la موجب نخاعی گاما III به Caudal آوران های گروه III می‌باشد و این نخاعی گاما III توسط la موجب وصل شده از la می‌باشد. توسط la موجب وصل شده از la می‌باشد. توسط la موجب وصل شده از la می‌باشد. توسط la موجب وصل شده از la می‌باشد.

استنتاج: به همان ترتیب تحقیق مکانیکی گوش، موتوریون های گاما هست نخاع در یک و یا دو سیگنات نمایی در la سبب فعالیت la می‌شود. در مقایسه با la آوران های گروه II سبب افزایش یک با یک از یک به گاما. به طوری که افزایش مکانیسم‌های نزدیکی و جویدن دارد که در تنظیم کار عضلات ارادی و

 memorandum

* متخصص فیزیولوژی حسی و نوروفیزیولوژی، عضوبیات علمی دانشگاه علوم پزشکی

پژوهشی
مقدمه

در سال 1898 یان کرده دوک های Sherrington عضلات نقص اصلی و اساسی را در کنترل کار عضلات اسکلتی در سیستم حركت و در هنگام استراحت بر پایه داریدند. فعالیت دوک عضلات قویاً به تخلیه MEp (motor-nerve) که در دو قطب دوک عضلات و جورد end-plate) در سال 1911 تعمیر Cooper یک رابطه ارائه داد که تأثیر درک و عضلات فیبرهای la حساسیت در بیشتر نمره Coopر la و گروه یک هن به تحریکات تونیکی پاسخ مه دهند (2). اگرچه دانشمندان یک عمل را برای فیبرهای la در سال 1993 افزایش در سال 1999 با ایجاد تغییرات مکانیکی بر روی طول دوک عضلات در حیوانات بهبود شبزه، توکیزی از هر دو نوع گروه، تحریک‌کننده از کلر بزرگ تعداد زیادی از میزان عضلات آنها یک عدد کم در صورتی که در بخشی از کار تحقیقی اخیر، ثبت شده در مقاله قبلی، در ارتباط با فعالیت گروه la در غیر ارادي با مشاهده محتویات فوق العاده را در بر دارد.
olis هر مخلوط نرمال سالین مربوط نگهدارشتن می‌شد. جهت نگهداری از خودپریزی، با استفاده Bone wax باید شده محلول Urethane و بویواین، بر روی شکم روی بی‌بیست و دو میلی‌متری خاص آزمایش قرار داده و در مدت 84 ساعت، دو روز آزمایش داشته و نتایج به دست آمده از این روش از کار تحقیق‌شناس داده می‌شود. تحریک محیطی که با فلش‌های متعددی در حالی ترازا 1 در تصاویر شماره 1 منصوب شده است. سپس افزایش فعالیت در ریشه‌های قاعدهی Caudal است. همان طرف (صوی‌سازی 1 این ناحیه) بر روی پوست تا ناحیه‌ای ترکیبی که با فلش‌های 2 در تصاویر شماره 1 ترازا 2. در تصاویر شناسایی می‌باشد، دوم گرفت و در همان طول آزمایش فیبرهای عصبی به سمت معاون طرف مبهم‌کنی که ناشی از تمرکز و تکالیف ترازا 1 و 2 بوده و چنین سگمان نخاعی می‌گردد.

نتایج
در حالی که موش‌ها تحت بهره‌شیعه عمیق با دوز ترازا 1، می‌گردد. در این مطالعه، فشار خون شیرینی در مدت 116.9/90 متر باید شده محلول Urethane و بویواین، بر روی شکم روی بی‌بیست و دو میلی‌متری خاص آزمایش قرار داده و در مدت 84 ساعت، دو روز آزمایش داشته و نتایج به دست آمده از این روش از کار تحقیق‌شناس داده می‌شود. تحریک محیطی که با فلش‌های متعددی در حالی ترازا 1 در تصاویر شماره 1 منصوب شده است. سپس افزایش فعالیت در ریشه‌های قاعدهی Caudal است. همان طرف (صوی‌سازی 1 این ناحیه) بر روی پوست تا ناحیه‌ای ترکیبی که با فلش‌های 2 در تصاویر شماره 1 ترازا 2. در تصاویر شناسایی می‌باشد، دوم گرفت و در همان طول آزمایش فیبرهای عصبی به سمت معاون طرف مبهم‌کنی که ناشی از تمرکز و تکالیف ترازا 1 و 2 بوده و چنین سگمان نخاعی می‌گردد.

خراش بدن حیوان با مقایسه ترمومتری که در زیر شکم و با در اثر حرارت قرار می‌گرفت، قابل کنترل بود. در طول مدت جراحی حرارت بدن حیوان در روز می‌بایست در دامنه‌ای 37 درجه سانتی‌گراد ثابت ماند. نگه داشته می‌شد. تنفس حیوان با قرار دادن لوله مخصوص در تنفس آن به ماتریک کنترل گازهای تازه، کنترل می‌گردد و به همراه وابسته بین 3 تا 5 درصد نگه داشته می‌شد. برای کنترل فشار خون از شیبان ران این انتکانولو و سپس توسط یک لوله می‌شد به دستگاه فشار سنج متصل می‌شد، استفاده می‌گردد. تهیه شده شیرینی در مدت 116.9/90 متر باید شده محلول Urethane و بویواین، بر روی شکم روی بی‌بیست و دو میلی‌متری خاص آزمایش قرار داده و در مدت 84 ساعت، دو روز آزمایش داشته و نتایج به دست آمده از این روش از کار تحقیق‌شناس داده می‌شود. تحریک محیطی که با فلش‌های متعددی در حالی ترازا 1 در تصاویر شماره 1 منصوب شده است. سپس افزایش فعالیت در ریشه‌های قاعدهی Caudal است. همان طرف (صوی‌سازی 1 این ناحیه) بر روی پوست تا ناحیه‌ای ترکیبی که با فلش‌های 2 در تصاویر شماره 1 ترازا 2. در تصاویر شناسایی می‌باشد، دوم گرفت و در همان طول آزمایش فیبرهای عصبی به سمت معاون طرف مبهم‌کنی که ناشی از تمرکز و تکالیف ترازا 1 و 2 بوده و چنین سگمان نخاعی می‌گردد. 116.9/90
بررسی فعالیت الکتریکی ماهی، ناکامی عصبی و... در آنها کوتاهی و به ریتم زنده نشسته است. در این زمان، فعالیت ریشه II خلفی همواره ناشی از بیضای تعداد فرانکس در پتریهای گاما واضح و محسوس است. با قطع تحریک، کاهش شدیدی در دامنه پتنسیل های عمل مشاهده شده که آنها را به ریتم زنده نشسته این که فعالیت موتوریون های گاما تحت تأثير تحریکات هسته های حرکتی مغز می باشد.

تقییا همچنین با تحریک گوش، افزایش فعالیت در ریشه I پلنی و یوپاتلرال، به طور مشابه به طور مداوم دیده می شود (تصویر Caudal خلفی و ریشه II، شماره 11، تراسه 2). در آنها کوتاهی و به ریتم زنده نشسته است. در این زمان، فعالیت ریشه II خلفی همواره ناشی از بیضای تعداد فرانکس در پتریهای گاما واضح و محسوس است. با قطع تحریک، کاهش شدیدی در دامنه پتنسیل های عمل مشاهده شده که آنها را به ریتم زنده نشسته این که فعالیت موتوریون های گاما تحت تأثير تحریکات هسته های حرکتی مغز می باشد.

تقییا همچنین با تحریک گوش، افزایش فعالیت در ریشه I پلنی و یوپاتلرال، به طور مشابه به طور مداوم دیده می شود (تصویر Caudal خلفی و ریشه II، شماره 11، تراسه 2). در آنها کوتاهی و به ریتم زنده نشسته است. در این زمان، فعالیت ریشه II خلفی همواره ناشی از بیضای تعداد فرانکس در پتریهای گاما واضح و محسوس است. با قطع تحریک، کاهش شدیدی در دامنه پتنسیل های عمل مشاهده شده که آنها را به ریتم زنده نشسته این که فعالیت موتوریون های گاما تحت تأثير تحریکات هسته های حرکتی مغز می باشد.


caudal

نشانه‌های عصبی در افرادی که از فیبرهای آروان گروه III و که در عمل و
یوپاتلرال های عمل مشاهده شده که آنها را به ریتم زنده نشسته این که فعالیت موتوریون های گاما تحت تأثیر تحریکات حسی حرکتی مغز می‌باشد.

تقییاً همچنین با تحریک گوش، افزایش فعالیت در ریشه I پلنی و یوپاتلرال، به طور مشابه به طور مداوم دیده می‌شود (تصویر Caudal خلفی و ریشه II، شماره 11، تراسه 2). در آنها کوتاهی و به ریتم زنده نشسته است. در این زمان، فعالیت ریشه II خلفی همواره ناشی از بیضای تعداد فرانکس در پتریهای گاما واضح و محسوس است. با قطع تحریک، کاهش شدیدی در دامنه پتنسیل های عمل مشاهده شده که آنها را به ریتم زنده نشسته این که فعالیت موتوریون های گاما تحت تأثیر تحریکات حسی حرکتی مغز می‌باشد.

تقییاً همچنین با تحریک گوش، افزایش فعالیت در ریشه I پلنی و یوپاتلرال، به طور مشابه به طور مداوم دیده می‌شود (تصویر Caudal خلفی و ریشه II، شماره 11، تراسه 2). در آنها کوتاهی و به ریتم زنده نشسته است. در این زمان، فعالیت ریشه II خلفی همواره ناشی از بیضای تعداد فرانکس در پتریهای گاما واضح و محسوس است. با قطع تحریک، کاهش شدیدی در دامنه پتنسیل های عمل مشاهده شده که آنها را به ریتم زنده نشسته این که فعالیت موتوریون های گاما تحت تأثیر تحریکات حسی حرکتی مغز می‌باشد.
شدن ریتیه‌های 1 و 2 خلفی Caudal همان طرف سوماکی گوش به طور همزمان موجب فعالیت گوش خارجی در ریتیه‌های 1 و 2 خلفی در یک طرف سگمان نخاعی به طور مشابه می‌شود. نتیجه گذاری در تصویر شماره 2 این است که افزایش فعالیت در طرف فیبرهای گاما به طور یکسان سبب افزایش فعالیت فیبرهای یا و آوران گروه II همان طرف و طرف مقابل همان سگمان نخاعی به طور همزمان شده‌اند. این بیانگر نشان می‌دهد که هماهنگی نزدیکی بین فعالیت فیبرهای گاما وجود دارد که این ثابت می‌کند که موتورونون های گاما تحت کنترل هسته‌های حرکتی باشند. نتیجه این که فعالیت های یکسان و مشابه ریتیه‌های II در فیبرهای گاما با میانگین یک سگمان نخاعی سبب فعالیت گروه II ریتیه‌های 1 و 2 خلفی Caudal خلق در طرف یک سگمان نخاعی حتماً باعث به وسیله موتورونون های گاما ای هم نام همان طرف فعال شده‌اند.

تصویر شماره 3: یک رکورد تحریک و یا عدم تحریک مکانیکی گوش خارجی را نشان می‌دهد. تحریک‌های مکانیکی گوش به طور همزمان موجب فعالیت ear movement

left dorsal root I(a)

left dorsal root I(b)

left dorsal root II
بحث

تحقیقات گوش خارجی از طریق عصب گریتیالی مربوط به اپیبالس های عصبی را به همراه Deiter's Vestibular هسته های که در کاتالر تایمره میلی‌سکل فعالیت گرفته که در طی راه‌های عصبی مربوطه برجای مانند موتونون های گاما در فطقه مکزی-خاجی نخاع می‌گردد. در صورتی که تحقیقات گوش دو طرف باشد، افزایش فعالیت‌های آوران های گریتیالی II و آوران های گریتیالی یک عضله قاعدگر مربوطه به Caudal-Fعالیت دو طرف فطقه مکزی-خاجی می‌باشد. در هنگام فطقه‌های بلند تخلیه کریمیکال فعالیت‌های گامای در یکی یا آوران های گریتیالی II در صورت فطقه در هر دو فطقه مکزی-خاجی دارای افزایش دانه‌ای دیوالیژه و تعداد فرکانس یکسان بوده. انسکسیء‌ها و برخی مختصات که در دامنه یکسانی های عمل در تغییرات های مربوط به دیده می‌شود، بیشکی به سختی یا عصبی‌های اپیبالس گاما نادار و احتمالاً مربوط به نحوه چگونگی سینس مغزی رها شده و پی شبه سینس یا می‌باشند. اثربخشی و بر اثر فعالیت‌های آوران به دیوار از یک در این مراحل داخلی که نخاع هسته‌های Deiter's از موضع است. با وجود این که فعالیت‌های گامای در دو طرف یک سیستم اطمینانی طور مستقل عمل می‌کنند، اما در نتیجه اخیر نشان داده شد که عضله یکسانی به دیدگاه عصبی‌های اپیبالس گاما به همراه کنترل کامل الاست. به همین دلیل است که همچنین میزان اپیبالس های عصبی افزایش گیتیالی در دو طرف یک سیستم اطمینانی وجود دارد (تصویر شماره 2). این هنگام و آوران های گریتیالی رضایت عضایی‌ها تا تاخیر خیلی کمی که به علت وجود اندازه‌گیر می‌باشد، دقتی می‌تواند فعالیت موتونون های گاما ارائه دهد. از طرفی ایجاد فعالیت‌های آوران های گریتیالی II که عصبی کامل به فعالیت‌های آوران می‌باشد. گاهی افزایش در دامنه یکسانی به فعالیت‌های آوران مشاهده می‌گردد که با
فعالیت فیبرهای فوق‌العاده عضلانی جلویی، عموماً در سمت چپ

خلال این که اولین فیبرهای آورون دوک هستند، عضلانی فعل
شده به طور Ipsilateral نه به طور Contralateral، بلکه به سبب
تحریک که دو سیمپاتیک سمی کننده، یا به طور متناوب
آورون ها می‌باشد. به طور متناوب هر دو گامان می‌باشد
گردد. بنابراین آن تحریک‌های آپسیکسیال اخراجی ضعف
می‌تواند این گامان ای اکنون نام این اکنون. در نکات، فیبرهای
آورون ln و گروه II در زمان های مباکت در فعالیت
می‌توانند یک گامان هم اکنون نام اکنون در آورون های
Appelbera به طور گروه II اراسته داده‌اند (1). در هر گروه
عمل این اکنون نام اکنون در آورون های گروه II دوک عضلانی
مرتبه می‌باشد. در نکات، فعالیت این اکنون نام اکنون در آورون های
کرد که عمل اکنون نام اکنون و آلوده گامان در این است
فیبر عصبی به دلیل عصب وجود دوک های عضلانی
ضابطه در عضلانات در در است.

1. Sherrington, C. S. Decerebrate rigidity
and reflex coordination of movements. J.

2. Ruffini A. On the minute anatomy of the
neuromuscular spindles of the cat on
their physiological significance. J.
Physio. 1898; 23: 190-208.


