Cloning and sequencing the plasmid encoding dense granule antigen 14 (GRA14) of Toxoplasma gondii RH strain

Ehsan Ahmadpour¹, Shahabeddin Sarvi², Ahmad Daryani³, Mehdi Sharif³, Mohammad-Bagher Hashemi Soteh⁴, Azadeh Mizani¹, Kian Rezaee⁵

¹ PhD Student, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
² PhD, Assistant Professor, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
³ PhD, Professor, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
⁴ PhD, Associate Professor, Cellular and Molecular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
⁵ Msc Student, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran

(Received December 25, 2013; Accepted April 30, 2014)

Abstract

Background and purpose: Toxoplasmosis is a common parasitic disease throughout the world and one-third of the population has antibodies to Toxoplasma gondii. This disease causes serious medical problems in fetuses and immunocompromised individuals. As gene encoding protein GRA14 can be considered as a suitable target for DNA vaccine and designing diagnostic kits; the aim of this study was to do cloning and sequencing the gene encoding GRA14 protein of Toxoplasma gondii RH strain.

Materials and methods: DNA extraction was performed on harvested tachyzoites from mouse peritoneal fluid, then PCR carried out and amplification products were analyzed by gel electrophoresis. GRA14 gene was cloned in pTG19-T as a cloning vector, then recombinant plasmid confirmed by the colony-PCR and restriction enzyme digestion using HindIII and EcoRI, followed by sequencing.

Results: Evaluation of PCR products by agarose gel electrophoresis and analysis of nucleotide sequencing of 1227 bp gene encoding the protein GRA14, revealed the complete homology with the recorded sequences in the gene bank. Furthermore, cloning of GRA14 gene in pTG19-T vector was confirmed with colony PCR and restriction enzyme digestion.

Conclusion: The results showed that the GRA14 gene was successfully cloned into the pTG19-T vector and this plasmid can be used to design DNA vaccines and diagnostic kits in further studies.

Keywords: Toxoplasma gondii, dense granule antigen 14, cloning

کلونینگ و توأم‌یابی پلاسمید کد کننده پروتئین گرانولی متراکم ۲۴ سویه RH توکسپولاسماسا گوندی

 imprimir 1 احسان احمدی‌پور
 شهابالدین سروری
 احمد دریایی
 مدیُ شریف
 محمد باقر هاشمی
 آزاده مینالی
 کیان رضایی

چکیده
 سابقه و هدف: بیماری توکسپولاسماسوموز از بیماری‌های شایع در جهان می‌باشد که حدود یک سوم مردم دارای آن‌ها بی‌اعتماد‌پذیر بر علیه توکسپولاسماسوموز می‌باشد. این بیماری به دلیل عوامل خیملی آن در موارد مادرزادی و نیز بیماران نقص بی‌سیمی آماده می‌باشد. در این مطالعه بر اساس DNA گرفته در پذیرش جهت روند PCR Colon isolates and pTG19-T دارای DNA سویه RH S. aureus گردیده که با به کار بردن DNA از روش‌های مختلف از جمله PCR گرفته شد. علاوه بر این، با استفاده از روش‌های فرآیند pTG19-T از DNA سویه RH گرفته و با استفاده از روش‌های مختلف از جمله PCR از DNA سویه RH گرفته شد. به منظور کنترل حساسیت و طراحی مدل مورد استفاده قرار گرفت. ژنتیک واژه‌های کلیدی: توکسپولاسماسا گوندی, GRA12, کلونینگ

مقدمه
 توکسپولاسماسا گوندی یک تک نکه باخته داخل سلولی اجباری است که طیف وسیعی از مهارداران را آموده می‌کند و سازگاری

E-mail: shahabesarvi@yahoo.com

© 1993-92 - نشریه‌های مهندسی دانشگاه علوم پزشکی مشهد

۱) دانشجوی دکتری، مرکز تحقیقات توکسپولاسماسوموز دانشگاه علوم پزشکی مشهد، مشهد، پزشکی، گروه آگاه‌شکنی و فرآیند توزیع
۲) استادیار، مرکز تحقیقات توکسپولاسماسوموز دانشگاه علوم پزشکی مشهد، مشهد، پزشکی، گروه آگاه‌شکنی و فرآیند توزیع
۳) استادیار، مرکز تحقیقات توکسپولاسماسوموز دانشگاه علوم پزشکی مشهد، مشهد، پزشکی، گروه آگاه‌شکنی و فرآیند توزیع
۴) استادیار، مرکز تحقیقات توکسپولاسماسوموز دانشگاه علوم پزشکی مشهد، مشهد، پزشکی، گروه آگاه‌شکنی و فرآیند توزیع
۵) استادیار، مرکز تحقیقات توکسپولاسماسوموز دانشگاه علوم پزشکی مشهد، مشهد، پزشکی، گروه آگاه‌شکنی و فرآیند توزیع

۱۰) تاریخ دریافت: ۱۳۹۹/۰۹/۲۰

۱۱) تاریخ پذیرش: ۱۳۹۹/۰۹/۲۰

۱۲) تاریخ ارجاع به اتاق اصلاحات: ۱۳۹۹/۰۹/۲۰
بروتئین‌های حاوی فیبر از پایه است.
جدول 1: آغازگرهای رفت و برگشت طراحی شده برای تکنیک زن 16S نورکولوکسما کونیدی به همراه نوی های وش آنزیمی

<table>
<thead>
<tr>
<th>آغازگر رفت (Forward)</th>
<th>آغازگر برگشت (Reverse)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAAAGCTTATGCAAGGCGATAGCG</td>
<td>AAAGAATTCCTATGCTGTTCTCTGGTA</td>
</tr>
</tbody>
</table>

(Hind III)

(EcoR I)

سپید تعداد ۱۰×۸-۵ ناکی زونیت به صورت داخلی صافی تریش و پس از ۲-۴ ساعت، براش منافع در صافی مور آسیبه به شرایت داده شده، لوله آزمایش حاوی ناکی زونیت‌ها در DNA ۸۰۰ متر می توانید ساترپیرون و گردید (۸۰۰). استخراج DNA ناکی زونیت‌ها بر اساس دستورالعمل کیت استخراج Bioneer, AccuPrep® Genomic DNA extraction kit, Cat. No.: K ۳۰۲۳

پرستی شد.

طراحی برای پرداخت

جهت انجام واکنش زنجیره‌ای پلیمراز (Polymerase chain reaction) ابتدا آغازگرهای Forward و برعکس (Reverser) با استفاده از اطلاعات نتوانی یافت شده در سایت Bioneer, AccuPrep® Gel Purification Kit, Cat. No.: K ۳۰۵۵-۱

یافتن و قطعه تکنیک بینی به همان سه در PCR جردا گردید. جهت تایید انواع PCR دارد نوی های وش آنزیمی به ابتدا مصرف از PCR میکروئیتر از حامله برای دیگر روی ۱ درصد الکتروفورز شد.

کلونینگ ۱۴-۱۹ در پلاسمای Top ۱۴ تای مقاله به نمونه انجام کلونینگ به از کیت pTG19 cloning vector Vivantis کیه شد. به شرکت pTG19 scouting vector تا ۱۰ مسجده Ecoli آن به بایکی ساخته میرود انتقال از کیت -۱۹ T PCR در این مطالعه به منظور انجام کلونینگ به استفاده شد. به شرکت pTG19 cloning vector دان شد. واکنش به حجم ۱۵ میکروئیتر شرکت جدول شد.

پس از انجام واکنش فقوط جهت پیدا برctransformation (Transformation) باکتری چیزی G14 (E. coli) از باکتری Top10 سوش مستعده میلی‌لیتری که در ۷۲ ساعت در دمای ۴ درجه سانتی‌گراد در نیک میکروئیتر به شرکت جدول شد. به همراه ۲۰٪ حاوی سانتی‌گراد و سپس به صورت شناسی در دمای ۴ درجه سانتی‌گراد انکویت گردید. پس از انجام واکنش فقوط جهت پیدا برctransformation (Transformation) باکتری چیزی G14 (E. coli) از باکتری Top10 مستعده میلی‌لیتری که در ۷۲ ساعت در دمای ۴ درجه سانتی‌گراد انکویت گردید.

روش PCR

برای انجام واکنش زنجیره‌ای پلیمراز از کیت Bioneer PCR master mix

سپید تعداد ۱۰×۸-۵ ناکی زونیت به صورت داخلی صافی تریش و پس از ۲-۴ ساعت، براش منافع در صافی مور آسیبه به شرایت داده شده، لوله آزمایش حاوی ناکی زونیت‌ها در DNA ۸۰۰ متر می توانید ساترپیرون و گردید (۸۰۰). استخراج DNA ناکی زونیت‌ها بر اساس دستورالعمل کیت استخراج Bioneer, AccuPrep® Genomic DNA extraction kit, Cat. No.: K ۳۰۲۳

پرستی شد.

طراحی برای پرداخت

جهت انجام واکنش زنجیره‌ای پلیمراز (Polymerase chain reaction) ابتدا آغازگرهای Forward و برعکس (Reverser) با استفاده از اطلاعات نتوانی یافت شده در سایت Bioneer, AccuPrep® Gel Purification Kit, Cat. No.: K ۳۰۵۵-۱

یافتن و قطعه تکنیک بینی به همان سه در PCR جردا گردید. جهت تایید انواع PCR دارد نوی های وش آنزیمی به ابتدا مصرف از PCR میکروئیتر از حامله برای دیگر روی ۱ درصد الکتروفورز شد.

کلونینگ ۱۴-۱۹ در پلاسمای Top ۱۴ تای مقاله به نمونه انجام کلونینگ به استفاده شد. به شرکت pTG19 cloning vector Vivantis کیه شد. به شرکت pTG19 cloning vector دان شد. واکنش به حجم ۱۵ میکروئیتر شرکت جدول شد.

پس از انجام واکنش فقوط جهت پیدا برctransformation (Transformation) باکتری چیزی G14 (E. coli) از باکتری Top10 مستعده میلی‌لیتری که در ۷۲ ساعت در دمای ۴ درجه سانتی‌گراد انکویت گردید. پس از انجام واکنش فقوط جهت پیدا برctransformation (Transformation) باکتری چیزی G14 (E. coli) از باکتری Top10 مستعده میلی‌لیتری که در ۷۲ ساعت در دمای ۴ درجه سانتی‌گراد انکویت گردید.

روش PCR

برای انجام واکنش زنجیره‌ای پلیمراز از کیت Bioneer PCR master mix
باکتری‌ها رای پذیر پلاسمیدی، ۱۰ میکرولیتر از پلاسمید‌های حاوی زن مورد نظر می‌کنیم و حاوی باکتری مستعد شده اضافه گردد و در نهایت با استفاده از شوک حرارتی پلاسمید نوترکیب به داخل باکتری منتقل می‌شود.

جدول شماره ۲: مواد و مقادیر هر یک در واکنش انجام کلونی‌گذاری

<table>
<thead>
<tr>
<th>مواد</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR product</td>
<td>5 µl</td>
</tr>
<tr>
<td>Vector</td>
<td>3 µl</td>
</tr>
<tr>
<td>x Ligation buffer</td>
<td>6 µl</td>
</tr>
<tr>
<td>T4 DNA Ligase</td>
<td>1 µl</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>15 µl</td>
</tr>
<tr>
<td>Total</td>
<td>30 µl</td>
</tr>
</tbody>
</table>

مسپس این باکتری‌ها ابتدا به مدت ۳۰ دقیقه داخل اکونیتاور LB شیکادار در ۳۷ درجه سانتی‌گراد و در میوه حرارتی کشت می‌کند. ماژول آنتی بیوکی در دمای ۵۰ به مدت ۳ دقیقه سانتریفون گرفته و درروپس بای‌لیبا مانده به یک پلاسمید آمی ۳ indolyl-beta-D-galacto-pyranoside X-gal, اسمیل-β-thiogalactopyranoside IPTG و ۱-bromo-۴-chloro-Isopropyl-

L (Isopropl β-D-1) اضافه شده و به کمک محله‌ای L ساخت در دمای ناقص پیش‌بینی شده است. LB پس از انجام کلونی‌گذاری و انتقال پلاسمید نوترکیب به داخل باکتری جهت تایید کلونی‌گذاری زن از روشنای زیر استفاده شد.

۱- تشکیل کلونی‌های آبی و سفید: پس از کشت باکتری‌های ترانسفورم شده در مسپس میوه حرارتی کشت، کلونی‌های آبی (کلونی با حالت تراکم) نوترکیب که به Indolyl β-thiogalactopyranoside X-gal و T4 DNA Ligase رنگ‌آمیزی دیده می‌شود و سفید (کلونی حاصل پلاسمید نوترکیب) را تشکیل خواهد شد.

۲- انجام Colony PCR از کلونی‌های آبی و سفید: برای این کار ۳-۲ دقیقه از کلونی‌های آبی و سفید حاصل مرحله ترانسفورم انتخاب (به عنوان جایگزین DNA اکو) و با
پلاسمید استخراج گردد و در نهایت، در معرض آنزیم‌های HindIII و EcoRI محدود‌الاندازه کردن الگوی الکترورافی، آندالوژی که یکی مربوط به پلاسمید و دیگری باندی 1227 نوکلوتیدی که نشان دهنده وارزه DNA GRA14 تکثیر و واکنش به روی 1 1 درصد آگار الکترورافی شد. باندی در محدوده 1227 نوکلوتیدی که نشان دهنده تکثیر اختصاصی ژن کدنده پروتئین GRA14 می‌باشد.

(تصویر شماره 1.)

پس از اتصال ژن pTG19-T به عنوان میزبان و کشت آن، در داخل باکتری چندین LB آل اتیوپایک آمیبی سیلن، بر روی محفظه طرحان و میکروبلوریت (تصویر شماره 1) که مشاهده گردید. در نهایت تعیین مولکولتایس از آگار الکترورافی، وارزه DNA GRA14 محقق شد. پس از اتصال ژن زنده، تا کاهش نیازهای الکترورافی، مربوط به تکثیر اختصاصی ژن کدنده پروتئین GRA14 می‌باشد.

(تصویر شماره 1.)

پس از اتصال ژن pTG19-T به عنوان میزبان و کشت آن، در داخل باکتری چندین LB آل اتیوپایک آمیبی سیلن، بر روی محفظه طرحان و میکروبلوریت (تصویر شماره 1) که مشاهده گردید. در نهایت تعیین مولکولتایس از آگار الکترورافی، وارزه DNA GRA14 محقق شد. پس از اتصال ژن زنده، تا کاهش نیازهای الکترورافی، مربوط به تکثیر اختصاصی ژن کدنده پروتئین GRA14 می‌باشد.

(تصویر شماره 1.)

پس از اتصال ژن pTG19-T به عنوان میزبان و کشت آن، در داخل باکتری چندین LB آل اتیوپایک آمیبی سیلن، بر روی محفاظ طرحان و میکروبلوریت (تصویر شماره 1) که مشاهده گردید. پس از اتصال ژن زنده، تا کاهش نیازهای الکترورافی، مربوط به تکثیر اختصاصی ژن کدنده پروتئین GRA14 می‌باشد.

(تصویر شماره 1.)

پس از اتصال ژن pTG19-T به عنوان میزبان و کشت آن، در داخل باکتری چندین LB آل اتیوپایک آمیبی سیلن، بر روی محفاظ طرحان و میکروبلوریت (تصویر شماره 1) که مشاهده گردید. پس از اتصال ژن زنده، تا کاهش نیازهای الکترورافی، مربوط به تکثیر اختصاصی ژن کدنده پروتئین GRA14 می‌باشد.
بپ"ح
آنتی‌ژن‌های دفعی - ترشحی انتقال نقص مهمی در تحریک سیستم ایمنی میزان دارد؛ به طوری که این نوع از آنتی‌ژن‌ها در فوتوزنسی‌های انسان سیبیرایم‌توسونdigest و محرکی فوتی توسط به آنتی‌ژن‌های محول و کبیشی، برای سیستم ایمنی سلولی می‌باشد. همچنین در مقایسه با آنتی‌ژن تام تکوکوپلاسمای سپ تحریک و تکثیر بیشتر لفوسایه‌تی T می‌شود. از این رو، آنتی‌ژن‌های دفعی - ترشحی به عنوان کاندیدای مناسب برای ترکیب ایمنی‌توسونی پیشنهاد شده‌اند (36). گرانول‌های ترشحی مترامک تکوکوپلاسما گوندی، اندام‌های ویژگی‌ور یکلور هستند و پروتئین‌های که در غیر شکل واقع رو به سطح انسان و همچنین غشاء اندام ورودی و سطح یکلور از گرانول‌های ترشحی مترامک شناسایی شده‌اند که به طور کلی جزء آنتی‌ژن‌های دفعی - ترشحی تکوکوپلاسما می‌باشد (10، 90).

برای اولین بار در سلول پروکاکتیک توکوکوپلاسما گوندی، برای اولین بار در سلول پروکاکتیک کلون گردد و مشاهده شد که قادر به تاریکهدارشنده می‌باشد. آنتی‌ژن‌های مرکزی و مقایسه آن با یک آنتی‌ژن‌های GRA14 تکوکوپلاسما با نژاد‌های موجود در کلون‌های دفعی این مطالعه نیز همانند اکثر مطالعات

دهدست و همکار، شماره ۱۵، اردیبهشت ۱۳۹۸
References

