تأثیر محیط جغرافیایی بر روی آلکالوئیدهای آتروپی و اسکولوئیدن در گیاه داتورا استراپونیوم (کشت شده در اهواز)

علی مهرضا معلم (Ph.D.) - سعید امیر عاقل (Ph.D.) - حسین عارف (Ph.D.) - فائزه یاسین (دکترای داروسازی)

چکیده
سابقه و هدف: با توجه به اهمیت گسترشده اسکولوئیدن (Scopolamine) و آتروپین (Atropine) عناوین آلکالوئیدهای موجود در گیاه داتورا، ارزیابی و تحقیقات ادامه داده شد.

اهداف این کار تحقیقاتی عبارتند از:

1. گیاه داتورا آلکالوئیدهایی در اون موجود داشته و بررسی تأثیر عوامل جغرافیایی در

2. اولیا در اکائولوئیدهایی در کشت شده در اهواز و بررسی تأثیر عوامل جغرافیایی در

3. I.R., UV-VIS, MASS, 13CNMR, 1HNMR

4. شناسایی آلکالوئیدهایی موجود در گیاه داتورا استراپونیوم کشت شده در

5. در محلول های الكلی و اسید و سپس تحلیل آنها از طریق کروماتوگرافی لایه نازک انجام

گردید.

نتایج: با توجه به پیچیدگی ساختار شیمیایی این آلکالوئیدهایی که ترکیباتی شناسایی و تعبیه شده هر یک از آنها صورت گرفت. دو I.R., UV-VIS, MASS, 13CNMR, 1HNMR, شناسایی آلکالوئیدهای موجود در اکائولوئیدهایی موجود در داتورا استراپونیوم، آتروپین و اسکولوئیدن

استنتاج: عملکرد ترکیبات آلکالوئیدهای موجود در گیاه داتورا استراپونیوم، آتروپین و اسکولوئیدن

در کشت و جغرافیا و منافع طبیعی آپ و اهواز و محل رویش تأثیر چندانی بر نوع کیفیت و کمی آلکالوئیدهای فوق نداشت است.

واژه‌های کلیدی: داتورا استراپونیوم، آلکالوئید، آتروپین، اسکولوئیدن

مقدمه
منابع ترکیبات آلکالوئیدهای موجود در گیاه داتورا استراپونیوم را می‌داند.

لاحظه برتری میزان آلکالوئیدهای انجام شده بود، گیاه استراپونیوم (Stramonium) به عنوان گونه برتر معرفی شده و در تحقیقاتی که انجام شده است. در تحقیقات فوق میزان آلکالوئیدهای نام گذاری شده است. در تحقیقات فوق میزان آلکالوئیدهای نام گذاری شده است.

در نتیجه، گونه‌های مختلف داتورا و آلکالوئیدهای آن تحقیقات متعددی در زمینه‌های مختلف از این بیورست آلکالوئیدهای محل یونیک، توزیع و تجمع آلکالوئیدهای در اندام‌های مختلف و آلکالوئیدهای این گونه ای این جنس و همین طور در زمینه جداسازی و تعبیه مقدار کمی آلکالوئیدهای این گیاه انجام شده است.

در تحقیقاتی که در دانشگاه اصفهان به منظور تعبیه
مواد و روش‌ها

1- روش کار در عصاره طبیعی خاصی در تصمیم‌گیری نموده باید گرمی از پودر گیاه (3) به فلخت نوشین و به داخل یک ارلن مایل میلی لیتری ریخته شده. هشت میلی لیتر اتانول و 4 میلی لیتر اسد کاردیبریک 1/100 نرمال به ارلن اضافه گردید و برای عصاره گیاهی به مدت 24 ساعت در دمای اتاق نگهداری شد. در این مدت مخلوط حاصل چند بار تپانداز می‌شد. سپس محتوی ارلن بر روی قیف بیاینده گرفته گردید و ارلن با 8 میلی لیتر اتانول شستن داده شد و بر روی قیف بیاینده گرفته گردید. تست مایر برای بررسی وجود آتکالوپیده در مخلوط نقلی و استحکام کامل انجام شد.

عصاره صاف شده با بان دستگاه تنظیم در خلاء منتقل و در دمای 40 درجه سانتی‌گراد و تحت خلاء تغییراتی در میزان آن به حدود 4 میلی لیتر رسد. در این حال کل موجود درعصاره کمالی حامل شده بود.

عصاره تغییراتی به 5 میلی لیتر اسد کاردیبریک 1/100 نرمال فیبری و 5 میلی لیتر محلول فیبری کاردیبریک 1 نرمال شسته و به دکانتور اضافه شد.

عصاره صاف 2-4 میلی لیتر کلوپرامین و شستن داده شده با نگهداری انجام شد.

2- جداسازی ترکیبات شیمیایی عکس موجود در عصاره به دست آمده از دانه‌های داتور استرادیوم

چگونه به دست آوردن ترکیبات شیمیایی عکس از روش کروماتوگرافی نیاز به تغییر استفاده گردید. سیلیکال استفاده شده از نوع G 60 و معرف آتشکاراس، معرف دراهم‌پرده انخیاب گردید. سپس در محل محلول شده نیز (90:10) آمودیاک غلیظ: آب است. بعدها به مدت 18 و 80/80 به دست آمد. عمل خراشیدن صفحه در دو منطقه از آن به طور جداگانه انجام شد.

جداگذاری نوآورا با اعمال در کلوپرامین و عمل صاف کردن برای جداسازی ذرات سیلیکال، هدایتی برای انجام شد. پس از تغییر کلوپرامین ماده با محاسبه بر روی شیشه ساخی قرار داده شد و نالایش آن به طور کامل خارج گردید. به منظور شناسایی و تعبیه ساختن I.R., MASS, HNMR بلورها به دست آمد، طیف های گرمفته شدند.

نتایج

بطریک‌های اهدافی که در اجرای این پروژه مورد نظر بوده و تاییدی که از دانلی کردن این اهداف در این بخش بسیار آمدند، عبارتند از:

6.1. های کلوپرامین، تست 9-7.8 بنیان نانوای سیستم

دانه‌های دانه‌های داتور استرادیوم استفاده از مواد بلیغ گیاه سیراسی ایران واقع در کرج نهایی شده و در بافت دانه‌های داتور استرادیوم آگاهانه دانسته شد. پس از نمونه برداری و شکست کردن نمونه، دانه‌های گیاهی آسیب شدند.

کلیه علوم پزشکی دانشگاه علوم پزشکی مازندران

بله علمی- پژوهشی دانشگاه علوم پزشکی مازندران

سال دهم/شماره 29/ زمستان 1379

16
الف) جداسازی و خالصی سازی آلکالوئیدهای گیاه

ب) تّین نسبت اسکروپولامین به آتروپین نماینگر کاهش وابستگی گیاه را نشان می‌دهد. در آزمایشاتی که گیاه در محیط‌های اسکروپولامین افزایش گرفت، میزان سرنشین‌های ترشح‌های حسی گیاه کاهش یافت. این نتایج اشاره به این که اسکروپولامین می‌تواند به جلوگیری از افزایش میزان آلکالوئیدهای گیاهی کمک کند. این موضوع با این همخوانی دارد که آلکالوئیدهای گیاهی ممکن است اثرات مثبتی بر سیستم‌های غددی و عصبی داشته باشند.

ج) بررسی اثرات آلکامفنیکلی به عنوان یک داروی واته و همچنین آلکامفنیکلی دارای اثرات مثبتی بر سیستم‌های غددی و عصبی است. این نتایج همچنین با اشاره مبنایی به اینکه آلکامفنیکلی ممکن است به بهبود هیپرتونی قلب و عروق کمک کند، ایجاد می‌شود.
1- شناسایی و تعیین ساختار شیمیایی ترکیب با: $R_p = 0.8$

کیفیت مادون فرمز به صورت قرص پرپرومین (KBr)

گرفته شد. در این طيف گروه های زیر مشاهده گردیدند:

$\gamma (cm^{-1})$:

\[
\begin{align*}
C = C (Str.)^0 : & \quad 1600 cm^{-1} (6.25 \mu), 1492 cm^{-1} (6.70 \mu) \\
C - H (OOP)^0 : & \quad 727.1 cm^{-1} (13.75 \mu), 694.3 cm^{-1} (14.4 \mu) \\
C - H (Str.) : & \quad 3084 cm^{-1} (3.24 \mu) \\
\text{Harmonic Combination} : & \quad 1963.4 cm^{-1} - 1876.6 cm^{-1} \\
\text{O} & \\
\text{(C - O)} : & \quad 1739 cm^{-1} (5.78 \mu) \\
\text{C - O (Str.)} : & \quad 1170.7 cm^{-1} (8.54 \mu), 1035.7 cm^{-1} (9.65 \mu) \\
\text{OH} & \\
\text{گروه آلکنی} : & \quad 3446.8-3000 cm^{-1} (2.9 \mu - 3.33 \mu) \\
\text{C - O (Str.)} : & \quad 1070.7 cm^{-1} (9.35 \mu) \\
\text{گروه آلکنی} : & \\
\text{CH\textsubscript{3}}. (Str.) : & \quad 2943.2 cm^{-1} (3.39 \mu) \\
\text{CH\textsubscript{3}} (bend.)\textsuperscript{\text{a}} : & \quad 1373 cm^{-1} (7.26 \mu) \\
\text{CH\textsubscript{2}} (bend.) : & \quad 1470 cm^{-1} (6.80 \mu) \\
\end{align*}
\]

گروه اکنی این ترکیب در حلال CDCl_3 با سنجش HNMR طی FT-NMR- Brucker, 80 MHz

تصویر شماره‌ی 1: طیف Noise decoupled 13CNMR

1. Stretching
2. Out of plane
3. Bending

عکس

\text{carbon-13 NMR spectra of ATROPIN in \text{CDCl}_3

18

سال دهم/شهریور 1379/ رمضان 1379

\text{جهل علمی- پژوهشی دانشگاه علوم پزشکی مازندران

www.SID.ir
مقدار مربوط به کربن گروه کربنیل استری (i)
تغییر مکان شیمیایی حدود ۱۰ نانومتر (nm) را نشان می‌دهد.
سایر پیک های موجود در ناحیه تغییر مکان شیمیایی ۲۰-۷۰ ppm مربوط به گروه های متیلن و متین
می‌باشد که برای اثبات و تعیین موقعیت آنها، طیف
۱۳CNMR-DEPT نظریه مواد ۱۳CNMR-DEPT های ۹۰ و ۱۵۰ در
گرفته شد. در طیف ۱۳CNMR-DEPT پیک های (j), (i), (h), (g), (e), (d)
گروه‌های متین (CH₃) می‌باشد.

فرمول ساختاری آتروپین را برای این ترکیب تایید
می‌نماید (تصویر شماره۲):

- شناسایی و تعیین ساختار ترکیب با ۱۱

ظاف مادون قرمز این ترکیب به صورت برمر
藩اسب (KBr) گرفته شد. در این طیف گروه‌های زیر مشاهده می‌شود:

\[
\begin{align*}
\gamma \text{ (cm}^{-1} \text{)}: \\
\text{C} = \text{C (Str.):} & \quad 1627.8 \text{ Cm}^{-1} (6.14 \mu) , \quad 1600 \text{ Cm}^{-1} (6.25 \mu) \\
\text{C} = \text{H (OOP):} & \quad 702 \text{ Cm}^{-1} (14.25 \mu) , \quad 736.7 \text{ Cm}^{-1} (13.57 \mu) \\
\text{C} - \text{H (Str.):} & \quad 3030.6 \text{ Cm}^{-1} (3.29 \mu)
\end{align*}
\]

هارمونیک/نماد بازی 1976.9 Cm⁻¹ - 1838 Cm⁻¹
(5.06 μ- 5.44 μ)

\[
\begin{align*}
\text{C} = \text{O (Str.):} & \quad 1730.0 \text{ Cm}^{-1} (5.78 \mu) \text{ Nonconjugated} \\
\text{C} - \text{O (Str.):} & \quad 1236.3 \text{ Cm}^{-1} (8.09 \mu) , \quad 1164.0 \text{ Cm}^{-1} (8.59 \mu)
\end{align*}
\]

\[
\begin{align*}
\text{O} \quad & \quad \text{O} \\
\text{(RCH - CHR)} & \quad \text{حلقه اپوساکید (CHR)}
\end{align*}
\]

نحوه تعداد ۲ فرمول ساختاری آتروپین

ظاف جرمی (E.I) این ترکیب پیک های زبر را
داده است. در این طیف پیک مربوط به بونمولولی
ظراف می‌شود. جرم مولکولی آتروپین ۲۸۹/۴ می‌باشد. نابرابری طیف جرمی نتیجه
کننده جرم مولکولی ماده موردنظر می‌باشد. اجزاء
بیشترین زبر در طیف مشخص شده‌اند:
گروه آلکانی:

C-H (Str.): 2846.7 Cm⁻¹ (3.51μ)
CH₃ (bend.): 1342.3 Cm⁻¹ (7.45 μ)
CH₂ (bend): 1458.1 Cm⁻¹ (6.86 μ)

طیف Noise decoupled ¹³CNMR

گروه الکلی:

O - H (Str.): 3600 3300 Cm⁻¹ (2.77 μ - 3.03 μ)
C - O (Str.): 1043.4 Cm⁻¹ (9.58μ)

کربن‌های بین‌النواحی (k,j,i,h): جهار علامت در ناحیه 137/19 (0-0.3) وجود چهار نوع کربن را در حلقه بینی مشخص می‌نماید و نشان دهنده این مسأله است که دو جفت کربن‌های از ریز و متصل به حلقو آروماتیک پیکساند. به عبارت دیگر وجود یک اختلاف در حلقه را نشان می‌دهد. علامت مربوط به کربن گروه کربنیل استری (3) به تغییر مكان شیمیایی حدود 172/5 ppm (0-0.3) نشان می‌دهد. سایر پیک‌های موجود در محدوده 173/5-160 (25/0-25/0): البته مربوط به گروه‌های متیل، متیلک و متین می‌باشد که برای پرسی دقیق تر طیف‌های DEPT 90° و DEPT 135° از ماده مورد نظر گرفته شد.

طیف جرمی این ترکیب پیک‌های زیر را داده است. این طیف پیک‌های مربوط به پاتون مولکولی را در نشان می‌دهد. جرم مولکولی [M⁺, m/z:303;4.76%]

اصلاً مربوط به گروه‌های متین می‌باشد. ادغام نتایج
طیف جرمی به دست آمده از اسکوپولایم با مراجعه علمی ۷۹/۵ مطالعه دارد و وجود این ترکیب را اثبات می نماید.

طیف ماروار پنجمین این ترکیب در جدول متن بالا گرفته شد و با طیف ماروار پنجمین اکسوپولایم داده شده در مرجع علمی ۸ مطالعه دارد. این طیف ساختن آروماتیکی اسکوپولایم را با گاز های در محدوده ۲۷۰-۳۰۰ nm

\[\lambda_{\text{max}} \text{ (nm)} \]
\[\begin{array}{ll}
263.3 & 0.374 \\
295.4 & 0.001 \\
257.9 & 0.500 \\
262.3 & 0.368 \\
252.2 & 0.422 \\
254.3 & 0.408 \\
245.5 & 0.348 \\
\end{array} \]

بیان ترتیب اهداف این کار جداسازی و شناسایی ترکیبات آلکالوییدی عمد های موجود در گیاه داتورا استامیوم کش داده شده در اینجا با استفاده از روش های نوین طیف سنجی بوده است. همچنین منشأ گردیده که عوامل جغرافیایی تاثیری در نوع آلکالوییدهای عمد های موجود در گیاه دارایگی است.

