اثر مهار دندانگی DNA آزاد شده از سلول سرطانی میلوفید انسان (HL-60) بر روی تکثیر لنفوئست های خون محسوب

عمس اپوخاری (Ph.D.)
جن وی چیانو (Ph.D.)

چکیده
سابقه و هدف: تا کنون چندین عامل پروتئینی مهارکننده سیستم ایمنی توسط سلول های سرطانی مختلف می‌باشد و آزمایش دقیقاً در این مقاله، DNA آزاد شده از سلول میلوفید انسان (HL-60) به صورت فوق العاده مورد مطالعه قرار گرفت. در این مقاله، موارد مطالعه فاراگر و مشخص شد دارای فعالیت مهارکننده سیستم ایمنی می‌باشد.

مواد و روش‌ها: سیرناتان کنت سلولی 60CL-6B پس از تغییر تغییر تغییر مصرف پویه دی‌یوAE-CL-6B را اضافه گردید و به کمک گروه‌بندی گروه‌بندی ثروت‌داهنده، فراکشن‌های مختلی فرستد آمد. در این مقاله، همچنین، فرستد آمد.

نکاته‌ها: آزمایش‌ها نشان می‌دهد که ترپین و رنی پرکریک سلولی می‌تواند روند انعقاد و لیزوزوم را ترکیب خوبی نماید. در این مقاله، DNA آزاد شده از سلول‌های سرطانی به تنظیم می‌باشد. پس از تغییر، تغییر در تعداد سلول و زنده بودن آنها نمی‌دهد و در نتیجه مسمومیت سلولی ایجاد نمی‌کند. از این‌رو سیستم سلولی نشان می‌دهد که لنفوئست‌های تحریکی شده توسط DNA می‌تواند را فاز G1 سیکل سلولی متفاوت می‌نماید و معنی‌دار و رود آنها به فاز S می‌شود.

استنتاج: علاوه بر فاکتورهای پروتئینی، سلول‌های لنفوئست همچنین می‌توانند سیستم ایمنی را مهار کنند. البته ممکن است در آینده به عنوان شاخه در تحقیقات سرطان بکار رود.

واژه‌های کلیدی: تکثیر لنفوئست‌های خون، سلول‌های سرطانی، DNA میلوفید

مقدمه
تکثیر لنفوئست‌های خون، یک پدیده مهم در راه‌های مهار کردن آغلک بیماری‌ها و میکروبی می‌باشد. در این مقاله، مطالعات متعددی در مورد شناسایی و نظیر خصوصیات عامل مهارکننده سیستم ایمنی حاصل از سلول‌های سرطانی انجام گرفته است. (1). پیش‌تر این عامل، خود را به خودی خود از تحریک با مولکول‌های مختلف تولید می‌شود (2). این عامل که قادر است می‌تواند

مطالب مربوط به عقلانیت پژوهش دانشگاه علوم پزشکی مازندران

دانشجویان و پژوهشگران

سال چهاردهم/ فارس 24/ تابستان 1384
DNA بیر نلومیتهای

اثر مهاراندیک

تهیه شدن سلول سرطانی پروستات (1) و سلول RPMI penicilin (KU-8) در محیط حاوی FCS کشت داده شدند.

جدول DNA کردن سلول سرطانی پروستات کشت سلولهای HL-60 از تغییرات در بافت‌های مولکول ترس و با سون pH A دیالیز شد و سپس شرکت فارماسیا CL-6B می آورند. میکروسکوپی یوپی (16 x 5/4 سانتیمتر) اضافه گردید. سیستم را با همان بار شست و سپس با گرداگردان مرحله به مرحله تا یک مولکول نمک تغییرات که در نتیجه جمع آوری شده که پس از تغییرات استراحت شد با پنجره 5/4 میکروسکوپی مورفی آزمایش تکثیر کرده گردید.

فراکسیون که فعالیت‌هایی به وجود می‌آورند و در یک ناحیه بودند مخلوط به کمک HPLC خالص گردید. فراکسیون بکار رفته در HPLC با استفاده از کل و DNA شاه (A) 5 میلی مولار ترس، یک میلی مولار NaCl (B) یک میلی مولار pH A با 0.1 میلی مولار EDTA 290 نانو مول تیتانیم گردید. FACS در آغاز 1 درصد الکترفورد که در جهت با استفاده از 2 تیم برای تحقیق مورفی یوپی از محیط کشت داده شدند. همچنین، سلولهای استروسارکوما (TE81) و سلولهای سرطانی مورد آزمایش (MCF-7) به همین نحو کشت داده شدند. کل سلولهای (American Culture Collection, Rockville, MD)
آزمایش ضد تکثیر روی سلول‌های سرطانی نیز به همین صورت انجام گرفت و در ۲۵ میکروگرم در میلی‌لیتر، استفاده شد و همچنین سلول‌های به کار رفته در جدول شماره ۱، ۱۲۳ گذر شده است. درصد توقف تکثیر از فومول زیر به دست آمد:

\[
\text{% Suppression} = \left(1 - \frac{\text{Sample CPM}}{\text{Control CPM}}\right) \times 100
\]

جدول شماره ۱: اثر DNA در رشد لاکهای سلولی مختلف

<table>
<thead>
<tr>
<th>سلول</th>
<th>CPM</th>
<th>DNA</th>
<th>DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>KU8</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>TE81</td>
<td>10</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>MCF-7</td>
<td>12</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>JT2</td>
<td>18</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Jca-1</td>
<td>20</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>HL-60</td>
<td>25</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

سلول‌ها در حضور (۲۵ µg/ml) DNA حدود ۳ روز کشت داده شد. نتایج، مانگینی سه نفر آن‌ها خرد.

الکتروفوروز: در زل ۱۰ گرم کماس بی‌لونه و نزدیک آمیزی شد. زل
رنگ‌شده، به سطع‌های چرخشی ترمیم و هر قطعه ترمیم ۵۰۰ میکرون.
اهالی و ابهام آزمایش ضد تکثیر به کار رفته.

در آزمایش از آزمایش الکتروفوروز شد و با این‌چنین DNA
بروماید رنگ آمیزی شد.

همس آزمایش: فراکشن‌ها تحت اثر:

\[
5 \text{ mg/ml} \\
0.5 \text{ mg/ml} \\
4 \text{ mg/ml} \\
2 \text{ mg/ml}
\]

و سپس در آزمایش ضد تکثیر به کار رفته.

انالیز سیکل‌سولوی: تئست‌های تحقیق شده با

میوتوز در حضور ۲۵ فراکشن ضد تکثیر یا در
ایثر مارکن‌دهی DNA بر لنوسیما

به علاوه، میزان جذب در بازه 10/5 نانومتر به 1/6 بود که در این روش وجود نواک‌ها در بوده است و همچنین هضم شد که حاصل Dnase حاصل از زل، با هضم آنسیمی از رفن اندازه بوده و نشان دهنده حضور RNAse در فراکشن است. وی لی RNase اثری روی DNA پاپانتزا نداشته.

شکل شماره 21: خلاصه کردن فراکشن‌های HPLC آمپاین.

خصوصیات فاکتور ضر رشد: آندازه‌های حاصل از فاکتور ضر رشد، به تعداد سلول و میزان زنده بودن آنها، به‌طور کلی نشان دهنده این است که همه رشد سلول را تحت فاکتور ضر رشد حرارت 100 درجه به مدت 5 دقیقه فاکتور ضر رشد در حاصل 28 جاده‌ای DNA را به کمک نشان می‌دهد که فاکتور ضر رشد و فاکتور ضر رشد در HPLC سلول‌ها در این فاکتور ضر رشد سلول به علت ترشحی مولکولی شدن DNA نمی‌باشد.

شکل 22: جاده‌ای DNA را به کمک

نها می‌دهد. آزمایشی می‌دهد که فاکتور ضر رشد در HPLC سلول‌ها در این فاکتور ضر رشد سلول به علت ترشحی مولکولی شدن DNA نمی‌باشد.

شکل 23: نها می‌دهد که فاکتور ضر رشد

فراکشن‌های RNAse در DNA دارای
لکن فرمول‌های ترکیب شده با میتوئن را که وابسته به دوز است، مصرف نماید. نیست جدی تریال عامل ضد تکنیک در ۱۲۰ به ۲۰۰ نانوامور کروماتوگرافی در آگزاس DNase و RNAse دارد که فعالیت ضد رشد به آنزیم بروتیلکوکین و حساسیت بالا ویلی و RNase و DNase زیستی آن را کم‌کم از بین می‌برد. چگونه سازی فرآیندهای مختلف یا DNA با DNA/F1 در هر DNA و پروتئین.

جدول شماره ۱: تاثیر سیکل سلولی لنفوسمیا یا ترکیب شده با PHA DNA در حضور فاکتور ضد رشد نشان می‌دهد. DNA رشد لنفوسمیا DNA از فاز G0/G1 متوقف می‌کند و مانع ورود آنها به فاز S سیکل سلولی می‌شود.

<table>
<thead>
<tr>
<th>فازهای سیکل سلولی</th>
<th>شرایط</th>
</tr>
</thead>
<tbody>
<tr>
<td>G0/G1</td>
<td>لنفوسمیا/PHA</td>
</tr>
<tr>
<td>G0/G1</td>
<td>DNA</td>
</tr>
<tr>
<td>S</td>
<td>DNA/PHA</td>
</tr>
<tr>
<td>G2/M</td>
<td>DNA/PHA</td>
</tr>
<tr>
<td>G0/G1</td>
<td>DNA/PHA</td>
</tr>
</tbody>
</table>

جدول شماره ۲: تاثیر انرژی DNA در حضور PHA. DNAUN (مقدار ۳۴۰μg/ml) در حضور DNA، فاکتور ضد رشد نشان می‌دهد. DNA رشد لنفوسمیا DNA از فاز G0/G1 متوقف می‌کند و مانع ورود آنها به فاز S سیکل سلولی می‌شود.

جدول شماره ۳: تاثیر سیکل سلولی لنفوسمیا از فاز G0/G1 متوقف می‌کند و مانع ورود آنها به فاز S سیکل سلولی می‌شود.

مطالعات محدود که توسط سایر محققین صورت گرفته نشان می‌دهد که حساسیت DNA متفاوتی دارد. رشد سلول ۶۰ همیشه DNA از آنها مشتق شده سلول سرطانی پروتئین (۱) و سلول دیفرانس موس (۳) تحت تاثیر فعالیت ضد رشد DNA بهره ویلی رشد سایر سلول‌ها متوقف می‌شود.
مطالعات انجام شده نشان می‌دهد که توقف رشد لنفوسیت‌ها ممکن است بک‌بندید. احتمالی‌پذیری دارد. بررسی‌های DNA نیاز به ایجاد سلول‌های مانند DNA رشد غیراختصاصی برای لنفوسیت‌ها داشته باشد. زیرا اسهال ماهی آزاد را به کار می‌برم، رشد لنفوسیت‌های خون محسوسی را به طور غیراختصاصی مرفک می‌کند.

مطالعات متعددی در مورد آزاد شدن از DNA سلول‌های زنده صورت گرفته است (9.1). با توجه به DNA سلول قلب قربانی (9) و سلول‌های طحال خرگوش، خود به خود DNA را در محیط کشت آزاد می‌کند. لنفوسیت‌های انسان به دو لگن تحریک (11) یا پس از تحریک با آنتیژن‌های متون (11-12) مقدار زیادی DNA تنیده گردیده در محیط کشت آزاد شدن کنید. بیشتر آزاد شده در رشته‌ای بوده و وزن مولکول آن DNA بین 10-12-10نانومتر می‌باشد که حدود 10–15 درصد آن‌ها به عنوان سلول متع尺 می‌شود. (10) همچنین، معلوم است که تریک پلی ساکاریدی با ساختار باعث آزاد شدن در خون محسوسی می‌شود که بعداً باعث تولید آنتی‌بادیهایی شود که در زنجیره مسیری DNA آزاد شده، باید DNA مسیری DNA آزاد شده، باید DNA مسیری DNA آزاد شده را بی‌کار نماید. همین‌طور فرک دارد و در فاز G1 ساخته می‌شود و به فاز S در هسته (14) می‌آید.

مکانیسم‌های استاتیگیکی باشند و توسعه DNA سلول‌های آسیب دیده به آزاد شده و به ویژه به توسعه می‌رسد که DNA خارج سلولی در سیستم‌شناسی کشت HL-60 بی‌مطالعه باشند. برخی از آنان DNA می‌تواند عمل و خصوصیات آن به خوبی منشی شود.
14. Aggarwal SK, Wagner RW, McAllister PK, Rosenberg B. Cell-surface-associated nucleic acid in

