بررسی اثرات هیستولوژیک میدان الکترومغناطیسی بر مخچه رت

مهدی کاتی (M.Sc)
فرشته طالبپور امیری (M.Sc)
منصوره سلیمانی (Ph.D)

چکیده

تاریخچه و هدف: اثر میدان‌های الکترومغناطیسی بر موجودات زندی نکش از مباحث روز می‌باشد. با تکنولوژی‌های افزایش روزافزون استفاده از امواج الکترومغناطیسی در صنعت و مهندسی، بشر در معرض میدان‌های الکترومغناطیسی متعدد ناشی از کامل‌الهای برق، فشار قوی اسهام فرومغناطیسی را برجسته می‌نماید و کامپیوتر قرار دارد. هدف این مطالعه بررسی اثرات هیستولوژیک میدان الکترومغناطیسی بر مخچه رت در دوره‌های داخل رحمی و دوره قبل از بلوغ (پایان دوم ماهگی) می‌باشد.

مواد و روش‌ها: به منظور بررسی اثرات هیستولوژیک میدان الکترومغناطیسی بر مخچه رت دستگاه مولد باند 120 گر در اتاق تحقیقات و تولید گروه ویستار و mouse به عنوان مدل آزمایشگاهی انتخاب شدند. ریشه‌های دو گروه کنترل و آزمایشی تعیین شدند. در هر گروه، روز صفر نام‌گذاری شد و روزهای 4، 8، 12، 16 و 20 نام‌گذاری گردید. در م참ه نام‌گذاری از روز صفر نام‌گذاری آزمایشی و در معرض میدان الکترومغناطیسی با شدت 120 گر قرار گرفتند. برای مطالعات هیستولوژیک، نوزادان پس از تولد نیز هر روزه هشت ساعت به مدت دو هفته در معرض میدان بودند.

یافته‌ها: نتایج بدست آمده نشان داد که با تغییر سلول‌های پوستی، مخچه و کاهش های سلول‌های دانه دارد.

استنتاج: براساس این نتایج، این تحقیق می‌تواند نتیجه‌گیری کند که امواج الکترومغناطیسی با شدت معین می‌تواند باعث تغییرات حساس و آسیب! دارایی مانند پایه‌ساز مخچه شوند.

واژه‌های کلیدی: میدان الکترومغناطیسی، رت، مخچه

مقیده

با توجه به اینکه در عصر حاضر کاربردی این پژوهش، دانشگاه تهران به طور دانشگاهی نه روز در معرض شعاع‌های الکترومغناطیسی ناشی از وسایل الکترونیکی مانند تلویزیون، کامپیوتر، مراکز معماری، تلفن همراه، وسایل تشخیص طبی، خطوط انتقال نیرو، بیروگاه‌های برق و...

* مربی علوم تربیتی-عضو هیات علمی دانشگاه علوم پزشکی هرمزگان
*** استادیار علوم تربیتی-عضو هیات علمی دانشگاه علوم پزشکی هرمزگان

پژوهشکده پژوهشی کلیه علمی-پژوهشی دانشگاه علوم پزشکی مازندران

سال پایان پزشکی/افزوده 23/روزمان 1380
عبر جریان الکترومغناطیسی با شدت حداکثر 15/5 آمیرو فرانکاس 50 هرتز میدانی به کنار گذاشته برای 100 گوس تولید می‌کند (شدت میدان با استفاده از تحلیل تبیین گردیده). علت انتخاب میدان 120 گوس، اثرات الکتریکی آن بر سیستم عصبی است که در شدت بالای 100 گوس قابل توجه بوده است(۶). یکی از مهم‌ترین تحقیقات فیزیک ژنیاتی انجام شده در مورد نحوه تأثیر میدان‌های الکترومغناطیسی ناشی از لیزر هموار اثرات می‌باشد(۷). از طرف دیگر، همکارانش در سال ۱۹۹۴ اثرات درمانی امواج الکترومغناطیسی را به یافته‌های استخوانی گزارش کردند(۸).

با عناية به عدم همخوانی مطالعات انجام شده و اینک که مطالعه بر روی تأثیر امواج الکترومغناطیسی بر روی بافت مغز نگرفته است و با توجه به افزایش نشان از امواج الکترومغناطیسی در صنعت و پزشکی، برای مقابله خطرنامه جانانه در ارتباط امواج الکترومغناطیسی با شدت مغناطیسی با عفاف و ارگان‌های مختلف ضروری است. با توجه به مطالعه انجام شده در مورد اثر میدان الکترومغناطیسی با شدت ۸۰ گوس بر فعالیت اجزای مغناطیسی و مطالعه انجام شده در مورد تأثیر میدان الکترومغناطیسی با شدت ۱۰۰ گوس بر رشد و تکامل جنین رت(۹)، در این مطالعه تصمیم گرفت شد که تأثیر میدان الکترومغناطیسی با شدت ۱۲۰ گوس بر بافت مغناطیسی مورد بررسی قرار گیرد.

مواد و روش‌ها
برای ایجاد میدان مغناطیسی دستگاهی به شکل سولویوس طراحی و ساخته شد. دستگاه مرکز از سیم پیچی است که در حول استوانه قرار دارد و شدت جریان وارد به آن توسط یک پنومتر تظیم گردید.
 فقط شماره‌ای روی آنها درج شده بود در انتخاب محقق قرار گرفته و مورد بررسی میکروسکوپی قرار می‌گرفتند.
برای احترام از عوارض جانبی، رت‌های کنترل نیز در یک دستگاه محیطی یکسان با رت‌های آزمایش قرار داده شد.

یافته‌ها

برای بررسی نتایج هیستوژیکی ابتدا خصوصیت مورفولوژیکی بانف مخچه در رت‌های کنترل بیان خواهد شد. سپس نتایج مربوط به رت‌های آزمایش بیان و با آن مقایسه خواهد شد. ذکر این نکته ضروری است که بانف مذکور از رت‌های دو ماهه که از دوران جنینی تا دو ماهه‌گی در معرض ناهنجاری‌های الکترونوماکروسکوپی 100 گوس قرار داشتند تهیه و مورد مطالعه قرار گرفته است.

تصویر شماره 1 فلویمیکروگراف مقطعی از مخچه رت دو ماهه از گروه کنترل را نشان می‌دهد. به‌طوری که در تصویر دیده می‌شود لایه مولکولار درای سولول‌های با هسته‌گرد و کوچک و میکروگره‌های متعدد در حد فاصل سولول‌ها است. لایه پورکتر نیز دارای سولول‌های با هسته و هستک مشخص و ستیل با لایه‌هایی بکو و وسیع می‌باشد. طبقه گرانولار با هسته‌های کوچک و مراکم و هاده‌های تک شیء در زمینه و سولول‌های گیلی‌پرکنده قابل مشاهده می‌باشد.

تصویر شماره 2 نمایی دیگری از همان مقطع نشان داده شده در تصویر شماره 1 با درشت‌نمایی پورکتر می‌باشد. این تصویر تمام موارد و طبقه‌های نشان داده شده در تصویر شماره 1 را با جزئیات بیشتر نشان می‌دهد.

در تصویر شماره 3 مقطعی از مخچه رت دو ماهه از گروه کنترل با درشت‌نمایی پورکتر نشان داده شده است. به هسته‌های درشت و روش و هستک پر بسته سولول‌های پورکتر نشان می‌دهد. در قسمت قابل مشاهده طبقه گرانولار، هسته‌های سولول‌های هتروکرومایک و هستک قابل رؤیت می‌باشد.
تصویر شماره ۳: فوتومیکروگراف مقطعی از مخجه رت دو ماهه گروه کنترل (نورک پیکان) سلول‌های پورکنزی (G) لاپی هورگانول; نرگ آمیزی: H&E بزرگنمایی ۱۱۲۰۰ برابر.

تصویر شماره ۴: فوتومیکروگراف مقطعی از مخجه رت دو ماهه از گروه آزمایش می‌باشد که در دوره جنین و پس از تولد تا دو ماهگی در معرض میزان الکترومغناطیسی ۱۲۰۰ گوس قرار داشته است. به طوری که در تصویر ملاحظه می‌گردد در مقایسه با گروه کنترل، لاپی هورگانول کم سلول‌تر به نظر می‌رسد، در طبقه پورکنزی (نورک پیکان)، سلول‌های پورکنزی کوچک و متراکم و دارای هسته پیکنیکی می‌باشند. همچنین تعداد سلول‌های پورکنزی کاهش یافته و فواصل بین آنها بیشتر شده است. این تغییرات باعث شده است که طبقه پورکنزی حالت منظم و ردیف گروه کنترل را نداشته باشد. لاپی هورگانول از نظر ضخامت کاهش یافته و عرض خونی در بین سلول‌ها قابل مشاهده نمی‌باشد. در ماهه سفید (W) تعداد سلول‌های رشته‌ها نسبت به رشته‌ها کاهش یافته و واکنش‌ها و حفرات متدی در آن قابل مشاهده می‌باشد.

تصویر شماره ۵: فوتومیکروگراف مقطعی از مخجه رت دو ماهه از گروه آزمایش را با درشت‌نمایی بیشتر نشان می‌دهد. با این درشت‌نمایی، جنبه‌های فوقالدکتری به گونه‌ای واضح تر دیده می‌شوند و مقایسه بین گروه کنترل و آزمایش سادگی امکان‌پذیر است.

در تصویر شماره ۶ سلول‌های پورکنزی و بخشی از طبقه گروانول با درشت‌نمایی بزرگ‌تر نشان داده شده است، با این درشت‌نمایی پیکنوزه‌شننده سلول‌های پورکنزی و متراکم شده و کاهش حجم سیتوپلاسم آن و کاهش تراکم هسته‌ها در طبقه گروانول به وضوح قابل مشاهده می‌باشد.
گزارش‌های مربوط به برای شرکت امکان مصرف مخابراتی برای بازی‌های دندان مورد تایید قرار می‌گیرد. همچنین بررسی‌های داده‌شده که افزایش توزیع‌های محلی در کارکنان صدمه به ۱۳ برابر افزایش دیگر بوده است (۱۱)

در مورد مکانیسم عمل میدان‌های الکترومغناطیسی در بر این است که میدان‌های الکترومغناطیسی به علت دارا بودن انرژی بالا سبب به‌روشی خود مفعول در بخش‌های مخصوص در محل خود اموج شده (۱۱) و هم‌اکنون پرتوهای نورانی از طریق اجلاس رادیکال‌های آزاد اثرات تخشراب خود را ایجاد می‌کنند (۱۲). رادیکال‌های آزاد

با حمله بر لیپیدها و تغییر دادن ماهیت آنها و شکست انرژی‌های غشای سلولی می‌شوند (۱۱) (۱۵)

این رادیکال‌ها با پراکسیداسیون لیپیدها سبب پیدایش مشخصات اسید جریب با زنجر کوتاه و محصول فرعی مولکولی سیستم می‌شوند که این ماده می‌تواند باعث انتقال و یا واکنش‌های در سلول گردید که نهایتاً منجر به افسردگی می‌شود. ایجاد انرژی‌های آمیزه‌ای، ایجاد انرژی‌های پترودین-پترودینیو که در مورد شکست‌های پروتوین منجر به می‌شود (۱۵)

رباکشل‌های آزاد همچنین به قند و بازه‌های آلی در ساختار مولکول جمله کرده و باعث شکست DNA شدن و در نتیجه بروز ناهنجاری‌های مختلف ناشی از آن می‌شوند (۱۷). شاید تغییرات مشاهده شده در سلول‌های عصبی در معرض امواج الکترومغناطیسی به خاطر تغییرات ساختار DNA باشد.

کاهش انرژی‌های هسته و حجم سلول‌ها که در این مطالعه مشاهده شد می‌تواند حالت اثر مستقیم میدان‌های الکترومغناطیسی و ناشی از آسیب DNA هسته و غشاء سلولی و همچنین جلوگیری از رشد سلول‌ها باشد.

تصویر شماره ۲: نمودارگراف مقعده از منچره رت دو ماهه از از گروه آموزش‌هات به حالت میزان فرد و هم‌بهره سلول پورزشی (نرکی پیکان) توجه جامید. نگهداری

پورزشی ۱۱۵۰۰/۹

پیکاتهای این مطالعه نشان داد که در ماده خاکستری تراکم سلولی در مسیر لایه مولکولار، پورزش و گریز می‌کند. همچنین ایجاد سلولی یا پورزش می‌کند. و هم‌اکنون این مطالعه و پیوند شده است. در ماده سفید نیز تعداد سلول‌های گلیا برگیرنده نسبت به رنگ‌ها کاهش پیدا می‌کند و در نتیجه به مصرف حفظ می‌شود.

در آن پیدا شده است.

مطالعات بسیار دیگری نیز گزارش کردند که موجوداتی که در معرض امواج الکترومغناطیسی قرار داشته نداد نشان دهنده خاصیت در مورد حیوانات آمیزه گزارش‌های زیادی از تناهی‌های جنین داده شده است (۱۸).

Pajkovic و همکارانش در سال ۲۰۰۱ گزارش کردند که امواج الکترومغناطیسی باعث کاهش ضخامت این قرار در UV و دیگر مولکولا. کاهش حجم اختیار می‌شود می‌گردد. در آن سلول در افزایش سلولی و افزایش تعداد سلولی بدون گرانول می‌شود (۱۰).

همچنین افراد سرطانی مغز استخوان، مغز،

سیستم عصبی در افزایش که با این امواج در ارتباط هستند. گزارش‌ها بود. این تحقیق نیز پایه‌های
شرایط و بهبود مطالعه بیشتری در خصوص تأثیر امواج الکترومغناطیسی روی باتف‌های مختلف و بخصوص جنین به عنوان یک عامل تأثیر اولویت پدیده. گذشته مطالعه داحل روزی یک مدل حیوانات انجام پذیرفت ولی به عنوان یک توسعه احیایی می‌توان ارزدشت که به دلیل اختلال آسیب‌رسان این امواج برای باتف‌های حساس جنین، به زنانی مبتلا به نوزادان از تاس و قرار گرفتن در معرض امواج مذکور نوسان در مورد یکدیگر و اکنون در ماه یکدیگر، محتمل است که میدان الکترومغناطیسی اثر دزدی یافته و زوایع سلول‌های گلیال داشته و از این طریق باعث می‌گردد. گریز این اثر را نیز بر توان به رادیوکالهای آزاد نسبت داد، جرا که اثر تخریبی رادیکال‌های آزاد بر غشای پلاسمایی که مورد تأکید برخی محققان قرار گرفته است(16) به می‌تواند چنین نتیجه را توجه نماید.

براساس یافته‌های این تحقیق می‌تواند تاثیر امواج الکترومغناطیسی باشد، بنابراین می‌تواند باعث تخریب باتف حساس و آسیب‌پذیری مانند بافت مخزه فهرست منابع

8. مجدی، کاتیه، جعفر، سلیمانی، راد. بررسی اثرات میدان الکترومغناطیسی بر اسپرمزنتز رت. مجله پزشکی هموگران، سال سوم، شماره ۳۳، زمستان ۱۳۶۷.
9. مجدی، کاتیه؛ منصوره، سلیمانی؛ جعفر، سلیمانی. راد. بررسی اثرات میدان الکترومغناطیسی بر رشد جنین. مجله پزشکی هموگران، سال سوم، شماره اول، بهار ۱۳۶۸.

16. بهادری، سام. در ترجمه پژوهشی یک اسپیتالی بیماری، رایتز، استان (مؤلف). تهران: چهر، 1388. صفحات 34 تا 98.