Volume 32, Issue 209 (5-2022)                   J Mazandaran Univ Med Sci 2022, 32(209): 146-162 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohagheghian A, Hooshmand Rad S, Ayagh K, Shirzad-Siboni M. Photocatalytic Removal of Acid Blue 113 Dye from Aqueous Solutions Using Zinc Oxide-Kaolin Nanocomposite under Visible Light Irradiation. J Mazandaran Univ Med Sci 2022; 32 (209) :146-162
URL: http://jmums.mazums.ac.ir/article-1-17973-en.html
Abstract:   (1243 Views)
Background and purpose: Textile industries produce huge amounts of colored wastewater. Synthetic dyes cause serious problems to human health and aquatic organisms due to their toxic and carcinogenic properties. In this study, Acid Blue 113 (AB113), which is stable and persistent against conventional treatment methods was selected as the target contaminant.
Materials and methods: The synthesis of the ZnO-Kaolin nanocomposite was performed by simple co-precipitation approach. The crystalline structure, functional groups, morphology, and elemental composition of the prepared samples were characterized using XRD, FT-IR, SEM and EDX analyses, respectively. Next, the photocatalytic response was evaluated via degradation of AB113 dye under visible irradiation. Also, the influences of operating parameters, including pH, catalyst value, initial AB113 concentration, various gases, organic compound types, and catalyst recycling on the photocatalytic performance were studied in a batch reactor.
Results: The SEM analysis confirmed the ZnO-Kaolin spherical structure. Presence of organic compounds in the aqueous medium decreased AB113 removal efficiency. The highest removal efficiency (84.33%) was obtained at catalyst loading=0.4 g.L-1, initial dye concentration=20 mg.L-1, and pH=7. Compared with ZnO and Kaolin nanoparticles, the resulting catalyst (ZnO-Kaolin) exhibited significantly improved photocatalytic activity in AB113 degradation. The degradation of AB113 was found to follow the first order kinetic (Kobs: 0.122 min-1 and R2: 0.9516) and the Langmuir-Hinshelwood model (KC: 0.278 mg.L-1.min-1 and KAB113: 0.128 L.mg-1).
Conclusion: The proficient performance of the LED/ZnO-Kaolin system illustrated that it can be used for practical applications in water treatment.
Full-Text [PDF 1706 kb]   (699 Downloads)    
Type of Study: Research(Original) | Subject: Environmental Health

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Journal of Mazandaran University of Medical Sciences

Designed & Developed by : Yektaweb